Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Respir J ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2234221

ABSTRACT

Abstract BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) and dysregulated myeloid cell responses are implicated in the pathophysiology and severity of coronavirus disease 2019 (COVID-19). METHODS: In this randomised, sequential, multicentre, placebo-controlled, double-blind study, adults aged 18-79 years (Part 1) or ≥70 years (Part 2) with severe COVID-19, respiratory failure, and systemic inflammation (elevated C-reactive protein/ferritin) received a single intravenous infusion of otilimab 90 mg (human anti-GM-CSF monoclonal antibody) plus standard care (NCT04376684). The primary outcome was the proportion of patients alive and free of respiratory failure at Day 28. RESULTS: In Part 1 (N=806 randomised 1:1 otilimab:placebo), 71% of otilimab-treated patients were alive and free of respiratory failure at Day 28 versus 67% who received placebo; the model-adjusted difference of 5.3% was not statistically significant (95% CI -0.8, 11.4; p=0.09). A nominally significant model-adjusted difference of 19.1% (95% CI 5.2, 33.1; p=0.009) was observed in the predefined 70-79 years subgroup, but this was not confirmed in Part 2 (N=350 randomised) where the model-adjusted difference was 0.9% (95% CI -9.3, 11.2; p=0.86). Compared with placebo, otilimab resulted in lower serum concentrations of key inflammatory markers, including the putative pharmacodynamic biomarker CCL17, indicative of GM-CSF pathway blockade. Adverse events were comparable between groups and consistent with severe COVID-19. CONCLUSIONS: There was no significant difference in the proportion of patients alive and free of respiratory failure at Day 28. However, despite the lack of clinical benefit, a reduction in inflammatory markers was observed with otilimab, in addition to an acceptable safety profile.

2.
Sci Rep ; 12(1): 6929, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815599

ABSTRACT

One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome and acute respiratory distress syndrome (ARDS). Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Circulating miRNAs in patients who underwent ARDS and needed mechanical ventilation (MV+; n = 15) were analyzed by next generation sequencing in comparison with patients who had COVID-19 poor symptoms but without intensive care unit requirement (MV-; n = 13). A comprehensive in silico analysis by integration with public gene expression dataset and pathway enrichment was performed. Whole miRNA sequencing identified 170 differentially expressed miRNAs between patient groups. After the validation step by qPCR in an independent sample set (MV+ = 10 vs. MV- = 10), the miR-369-3p was found significantly decreased in MV+ patients (Fold change - 2.7). After integrating with gene expression results from COVID-19 patients, the most significant GO enriched pathways were acute inflammatory response, regulation of transmembrane receptor protein Ser/Thr, fat cell differentiation, and regulation of biomineralization and ossification. In conclusion, miR-369-3p was altered in patients with mechanical ventilation requirement in comparison with COVID-19 patients without this requirement. This miRNA is involved in inflammatory response which it can be considered as a prognosis factor for ARDS in COVID-19 patients.


Subject(s)
COVID-19 , Circulating MicroRNA , MicroRNAs , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/genetics , Circulating MicroRNA/genetics , Cytokine Release Syndrome , Humans , MicroRNAs/genetics , Respiratory Distress Syndrome/genetics , SARS-CoV-2
3.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1217090

ABSTRACT

The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions.


Subject(s)
COVID-19/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/pathology , Ceramides/blood , Ceramides/metabolism , Female , Hospitalization , Humans , Kynurenine/blood , Kynurenine/metabolism , Male , Metabolomics , Middle Aged , Prospective Studies , Severity of Illness Index , Tryptophan/blood , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL